Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
- Given target value is a floating point.
- You may assume k is always valid, that is: k ≤ total nodes.
- You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> closestKValues(TreeNode root, double target, int k) {
List<Integer> res = new ArrayList<Integer>();
PriorityQueue<Integer> queue = new PriorityQueue<>(
new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
double sign = Math.abs(i1 - target) - Math.abs(i2 - target);
if (sign > 0) return 1;
else if (sign < 0) return -1;
else return 0;
}
}
);
visit(root, queue);
while (k-- > 0) {
res.add(queue.poll());
}
return res;
}
private void visit(TreeNode node, PriorityQueue<Integer> queue) {
if (node == null) return;
queue.add(node.val);
visit(node.left, queue);
visit(node.right, queue);
}
}
======
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> closestKValues(TreeNode root, double target, int k) {
List<Integer> res = new ArrayList<Integer>();
PriorityQueue<Integer> queue = new PriorityQueue<>(
new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
double sign = Math.abs(i1 - target) - Math.abs(i2 - target);
if (sign > 0) return -1;
else if (sign < 0) return 1;
else return 0;
}
}
);
visit(root, queue, k, target);
while (k-- > 0) {
res.add(0, queue.poll());
}
return res;
}
private void visit(TreeNode node, PriorityQueue<Integer> queue, int k, double target) {
if (node == null) return;
if (queue.size() == k) {
if (Math.abs(node.val - target) < Math.abs(queue.peek() - target)) {
queue.poll();
queue.offer(node.val);
}
} else {
queue.offer(node.val);
}
visit(node.left, queue, k, target);
visit(node.right, queue, k, target);
}
}
======
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<Integer> closestKValues(TreeNode root, double target, int k) {
List<Integer> res = new ArrayList<>();
List<Integer> small = new ArrayList<>();
List<Integer> big = new ArrayList<>();
visitSmall(root, target, small);
visitBig(root, target, big);
int p1 = small.size() - 1;
int p2 = big.size() - 1;
while (p1 >= 0 || p2 >= 0) {
if (p1 < 0 || (p2 >= 0 && Math.abs(small.get(p1) - target) > Math.abs(big.get(p2) - target))) {
res.add(big.get(p2));
p2--;
} else {
res.add(small.get(p1));
p1--;
}
if (res.size() == k) break;
}
return res;
}
private void visitSmall(TreeNode node, double target, List<Integer> res) {
if (node == null) return;
visitSmall(node.left, target, res);
if (node.val > target) {
return;
}
res.add(node.val);
visitSmall(node.right, target, res);
}
private void visitBig(TreeNode node, double target, List<Integer> res) {
if (node == null) return;
visitBig(node.right, target, res);
if (node.val <= target) {
return;
}
res.add(node.val);
visitBig(node.left, target, res);
}
}