A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) =
|p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at
(0,0)
, (0,4)
, and (2,2)
:1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point
(0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
public class Solution {
public int minTotalDistance(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
ArrayList<Integer> xs = new ArrayList<>();
ArrayList<Integer> ys = new ArrayList<>();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 1) {
xs.add(i);
ys.add(j);
}
}
}
return getMin(xs) + getMin(ys);
}
private int getMin(ArrayList<Integer> list) {
Collections.sort(list);
int res = 0;
int s = 0;
int e = list.size() - 1;
while (s <= e) {
res += list.get(e--) - list.get(s++);
}
return res;
}
}
没有评论:
发表评论