Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null) {
return true;
}
return Math.abs(depth(root.left)-depth(root.right))<=1 && isBalanced(root.left) && isBalanced(root.right);
}
public int depth(TreeNode root) {
if(root==null) {
return 0;
} else {
return 1 + Math.max(depth(root.left), depth(root.right));
}
}
}
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null) {
return true;
}
return getDepth(root, 0)!=-1;
}
private int getDepth(TreeNode node, int curDepth) {
if(node==null) {
return curDepth;
}
int leftDep = curDepth;
int rightDep = curDepth;
if(node.left!=null) {
leftDep = getDepth(node.left, leftDep + 1);
}
if(leftDep==-1) {
return -1;
}
if(node.right!=null) {
rightDep = getDepth(node.right, rightDep + 1);
}
if(rightDep==-1) {
return -1;
}
int gap = (int) Math.abs(rightDep-leftDep);
if(gap>1) return -1;
else return Math.max(leftDep, rightDep);
}
}
没有评论:
发表评论