A-Z is being encoded to numbers using the following mapping:
'A' -> 1 'B' -> 2 ... 'Z' -> 26Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message
"12",
it could be decoded as "AB" (1 2) or "L" (12).
The number of ways decoding
"12" is 2.public class Solution {
public int numDecodings(String s) {
if(s==null || s.isEmpty() || s.startsWith("0")) {
return 0;
}
int ways[] = new int[s.length()+1];
ways[0] = 1;
for(int i=0;i<s.length();i++) {
if(s.charAt(i)!='0') {
ways[i+1] += ways[i];
}
if(i!=0 && Integer.parseInt(s.substring(i-1, i+1))==0) {
return 0;
}
if(i!=0 && Integer.parseInt(s.substring(i-1, i+1))<=26 && s.charAt(i-1)!='0') {
ways[i+1] += ways[i-1];
}
}
return ways[ways.length-1];
}
}
=========
public class Solution {
public int numDecodings(String s) {
if (s == null || s.length() == 0 || s.charAt(0) == '0') {
return 0;
}
int nPre2 = 0;
int nPre1 = 1;
int n = 0;
for (int i = 0; i < s.length(); i++) {
n = 0;
if (s.charAt(i) != '0') {
n = nPre1;
}
if (i != 0) {
int num1 = Integer.parseInt(s.substring(i - 1, i + 1));
if (num1 >= 10 && num1 <= 26) {
n += nPre2;
}
}
nPre2 = nPre1;
nPre1 = n;
}
return n;
}
}
没有评论:
发表评论