Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as
1
and 0
respectively in the grid.For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]The total number of unique paths is
2
.Note: m and n will be at most 100.
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null) {
return 0;
}
int m = obstacleGrid.length;
if(m==0) {
return 0;
}
int n = obstacleGrid[0].length;
if(n==0) {
return 0;
}
int step[][] = new int[m][n];
for(int i=0;i<m;i++) {
for(int j=0;j<n;j++) {
int g = obstacleGrid[i][j];
if(g==1) {
step[i][j] = 0;
} else if(i==0 && j==0) {
step[i][j] = 1;
} else if(i==0) {
step[i][j] = step[i][j-1];
} else if(j==0) {
step[i][j] = step[i-1][j];
} else {
step[i][j] = step[i-1][j] + step[i][j-1];
}
}
}
return step[m-1][n-1];
}
}
没有评论:
发表评论