Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
public class Solution {
public int minPathSum(int[][] grid) {
if(grid==null || grid.length==0 || grid[0].length==0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int max[][] = new int[m][n];
for(int i=0;i<m;i++) {
for(int j=0;j<n;j++) {
if(i==0 && j==0) {
max[0][0] = grid[0][0];
} else if(i==0 && j!=0) {
max[i][j] = max[i][j-1] + grid[i][j];
} else if(i!=0 && j==0) {
max[i][j] = max[i-1][j] + grid[i][j];
} else {
max[i][j] = Math.min(max[i][j-1] + grid[i][j], max[i-1][j]+grid[i][j]);
}
}
}
return max[m-1][n-1];
}
}
========
public class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int row = grid.length;
int column = grid[0].length;
for (int i = 0; i < row; i++) {
for (int j = 0; j < column; j++) {
if (i == 0 && j == 0) {
grid[i][j] = grid[i][j];
} else if (i == 0) {
grid[i][j] = grid[i][j] + grid[i][j - 1];
} else if (j == 0) {
grid[i][j] = grid[i][j] + grid[i - 1][j];
} else {
grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j];
}
}
}
return grid[row - 1][column - 1];
}
}
没有评论:
发表评论