Given an array of n integers nums and a target, find the number of index triplets
i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums =
[-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
Could you solve it in O(n2) runtime?
public class Solution {
public int threeSumSmaller(int[] nums, int target) {
int res = 0;
Arrays.sort(nums);
for (int i = 0; i < nums.length; i++) {
int n1 = nums[i];
int start = i + 1;
int end = nums.length - 1;
while (start < end) {
int n2 = nums[start];
int n3 = nums[end];
int sum = n1 + n2 + n3;
if (sum >= target) {
end--;
} else if (sum < target) {
res += end - start;
start++;
} else {
end--;
}
}
}
return res;
}
}
没有评论:
发表评论