Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums =
Given nums =
[1,3,-1,-3,5,3,6,7]
, and k = 3.Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as
[3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
Could you solve it in linear time?
public int[] maxSlidingWindow(int[] nums, int k) {
int len = nums.length;
int[] result = new int[len - k + 1];
if(nums.length == 0) return new int[0];
Queue<Integer> queue = new PriorityQueue<Integer>(new Comparator<Integer>(){
@Override
public int compare(Integer i1, Integer i2){
return Integer.compare(i2, i1);
}
});
for(int i = 0; i < k; i ++){
queue.add(nums[i]);
}
result[0] = queue.peek();
for(int i = k; i < len; i ++){
queue.remove(nums[i - k]);
queue.add(nums[i]);
result[i - k + 1] = queue.peek();
}
return result;
}
}
========
public class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || nums.length == 0 || k == 0) {
return new int[0];
}
Deque<Integer> deque = new ArrayDeque<>();
int n = nums.length;
int[] res = new int[n - k + 1];
int j = 0;
for (int i = 0; i < n; i++) {
if (!deque.isEmpty() && deque.peek() <= i - k) {
deque.poll();
}
while (!deque.isEmpty() && nums[i] > nums[deque.peekLast()]) {
deque.pollLast();
}
deque.offer(i);
if (i >= k - 1) {
res[j++] = nums[deque.peek()];
}
}
return res;
}
}
没有评论:
发表评论